Numerical hydrodynamic simulations of molecular outflows driven by Hammer jets

نویسندگان

  • Roland Völker
  • Michael D. Smith
  • Gerhard Suttner
  • Harold W. Yorke
چکیده

Very young protostars eject collimated jets of molecular gas. Although the protostars themselves are hidden, some of their properties are revealed through the jet dynamics. We here model velocity shear, precession, pulsation and spray within dense jets injected into less-dense molecular clouds. We investigate the Hammer Jet, for which extreme velocity variations as well as strong ripping and spray actions are introduced. A three dimensional ZEUS-type hydrodynamics code, extended with molecular physics, is employed. Jet knots, previously shown to be compact in simulations of smoother jets, now appear as prominent bow shocks in H2 and as bullets in CO emission lines. High proper motions are predicted in the jet. In the lobes we uncover wide tubular low-velocity CO structures with concave bases near the nozzle. Proper motion vectors in the lobes delineate a strong accelerated flow away from the head with some superimposed turbulent-like motions. The leading bow is gradually distorted by the hammer blows and breaks up into mini-bow segments. The H2 emission line profiles are wide and twin-peaked over much of the leading bow. On comparison with the simulations, we identify observed outflows driven by various dynamical types of jet. Shear is essential to produce the jet bows, spray or precession to widen the outflows and hammer blows to generate knotty jets. We identify the proper motions of maser spots with the pattern speed of density peaks in the inner jet and shell.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of the temperature profile of the accretion disk on the structure of jets and outflows around protostars

Magnetic fields play an important role in creating, driving, and in the evolution of outflows and jets from protostars and accretion disks. On the other hand, the temperature profile of the accretion disks may also affect the structure of the magnetic field and outflows. In this paper, we use the self-similar method in cylindrical coordinates to investigate the effect of the temperature profile...

متن کامل

Precessing Jets and Molecular Outflows: A 3-D Numerical Study

– 2 – We present 3-D numerical hydrodynamical simulations of precessing supersonic heavy jets to explore their evolution, how they differ from straight jets and how well they serve as a model for generating molecular outflows from Young Stellar Objects. The dynamics are studied with a number of high resolution simulations on a Cartesian grid (128x128x128 zones) using a high order finite differe...

متن کامل

Hydrodynamic simulations of molecular outflows driven by slow-precessing protostellar jets

We present hydrodynamic simulations of molecular outflows driven by jets with a long period of precession, motivated by observations of arc-like features and Ssymmetry in outflows associated with young stars. We simulate images of not only H2 vibrational and CO rotational emission lines, but also of atomic emission. The density cross section displays a jaw-like cavity, independent of precession...

متن کامل

Outflow Driven Cavities: Numerical Simulations of Intermediaries of Protostellar Turbulence

We investigate the evolution of fossil cavities produced by extinct YSO jets and wide angle outflows. Fossil cavities are ellipsoidal or cylindrical shells of swept-up of ambient (molecular cloud) material moving at low velocities. The cavities form when the momentum in a YSO jet or wide angle outflow decays in time allowing the bowshock or swept-up shell to decelerate to velocities near the tu...

متن کامل

Hydrodynamic Collimation of Yso Jets

We present the results of numerical hydrodynamic models for the collimation of outflows from young stellar objects. We show that the presence of a toroidal environment can lead to efficient formation of jets and bipolar outflows from initially uncollimated central winds. The interaction between the wind and the environment leads to two types of collimation, one which is dominated by radiative c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999